Package: LqG 0.1.0

LqG: Robust Group Variable Screening Based on Maximum Lq-Likelihood Estimation

Produces a group screening procedure that is based on maximum Lq-likelihood estimation, to simultaneously account for the group structure and data contamination in variable screening. The methods are described in Li, Y., Li, R., Qin, Y., Lin, C., & Yang, Y. (2021) Robust Group Variable Screening Based on Maximum Lq-likelihood Estimation. Statistics in Medicine, 40:6818-6834.<doi:10.1002/sim.9212>.

Authors:Mingcong Wu, Yang Li, Rong Li

LqG_0.1.0.tar.gz
LqG_0.1.0.zip(r-4.5)LqG_0.1.0.zip(r-4.4)LqG_0.1.0.zip(r-4.3)
LqG_0.1.0.tgz(r-4.4-any)LqG_0.1.0.tgz(r-4.3-any)
LqG_0.1.0.tar.gz(r-4.5-noble)LqG_0.1.0.tar.gz(r-4.4-noble)
LqG_0.1.0.tgz(r-4.4-emscripten)LqG_0.1.0.tgz(r-4.3-emscripten)
LqG.pdf |LqG.html
LqG/json (API)

# Install 'LqG' in R:
install.packages('LqG', repos = c('https://lirong95.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 174 downloads 3 exports 0 dependencies

Last updated 3 years agofrom:8cc52d9d4e. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 19 2024
R-4.5-winNOTENov 19 2024
R-4.5-linuxNOTENov 19 2024
R-4.4-winNOTENov 19 2024
R-4.4-macNOTENov 19 2024
R-4.3-winNOTENov 19 2024
R-4.3-macNOTENov 19 2024

Exports:grsc.marg.MLqEgrsc.MLqEMLqE.est

Dependencies: